Category: sun

The heliosphere is the bubble-like region of s…

The heliosphere is the bubble-like region of space dominated by the Sun, which extends far beyond the orbit of Pluto. Plasma “blown” out from the Sun, known as the solar wind, creates and maintains this bubble against the outside pressure of the interstellar medium, the hydrogen and helium gas that permeates the Milky Way Galaxy. The solar wind flows outward from the Sun until encountering the termination shock, where motion slows abruptly. The Voyager spacecraft have explored the outer reaches of the heliosphere, passing through the shock and entering the heliosheath, a transitional region which is in turn bounded by the outermost edge of the heliosphere, called the heliopause.
The shape of the heliosphere is controlled by the interstellar medium
through which it is traveling, as well as the Sun and is not perfectly
spherical. The limited data available and unexplored nature of these structures have resulted in many theories. The word “heliosphere” is said to have been coined by Alexander J. Dessler, who is credited with first use of the word in the scientific literature.

On September 12, 2013, NASA announced that Voyager 1 left the heliopause on August 25, 2012, when it measured a sudden increase in plasma density of about forty times. Because the heliopause marks one boundary
between the Sun’s solar wind and the rest of the galaxy, a spacecraft
such as Voyager 1 which has departed the heliosphere, can be said to
have reached interstellar space. source

AR9077: Solar Magnetic Arcade On July 14…

AR9077: Solar Magnetic Arcade

On July 14th, solar active region 9077 (AR9077) produced a massive flare. The event also blasted an enormous cloud of energetic charged particles toward planet Earth, triggering magnetic storms and dramatic auroral displays. This striking close-up of AR9077 was made by the orbiting TRACE satellite shortly after the flare erupted. It shows million degree hot solar plasma cooling down while suspended in an arcade of magnetic loops. 

Credit: TRACE, Stanford-Lockheed ISR, NASA

Solar Prominence A prominence is a large,…

Solar Prominence

A prominence is a large, bright, gaseous feature extending outward from the Sun’s surface, often in a loop shape. Prominences are anchored to the Sun’s surface in the photosphere, and extend outwards into the Sun’s corona. While the corona consists of extremely hot ionized gases, known as plasma, which do not emit much visible light, prominences contain much cooler plasma, similar in composition to that of the chromosphere. The prominence plasma is typically a hundred times more luminous and denser than the coronal plasma. (source

animation:

Chuck Manges

Neptune (red arc) completes one orbit around…

Neptune (red arc) completes one orbit around the Sun (center) for every 164.79 orbits of Earth. The light blue object represents Uranus.

The diffuse heliospheric current extends to th…

The diffuse heliospheric current extends to the outer regions of the Solar System, and results from the influence of the Sun’s rotating magnetic field on the plasma in the interplanetary medium. source.

The Parker Solar Probe just left Earth and is …

The Parker Solar Probe just left Earth and is on its way to the Sun! And the last panel has a ring of truth to it. After the probe dies and its components burn away, all that will be left is the carbon heat shield.. which will continue to orbit the Sun until its death.

Transit of Venus Image credit: Richard Orr

Transit of Venus 

Image credit:

Richard Orr

Partial Solar Eclipse 2 – May 10, 2013 Jo…

Partial Solar Eclipse 2 – May 10, 2013

Joseph Brimacombe

Planetary nebula A planetary nebula, abbrev…

Planetary nebula

A planetary nebula, abbreviated as PN or plural PNe, is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The word “nebula” is Latin for mist or cloud, and the term “planetary nebula” is a misnomer that originated in the 1780s with astronomer William Herschel because, when viewed through his telescope, these objects resemble the rounded shapes of planets. Herschel’s name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years.

Most planetary nebulae form at the end of the star’s life, during the red giant phase, when the outer layers of the star are expelled by strong stellar winds. After most of the red giant’s atmosphere is dissipated, the ultraviolet radiation of the hot luminous core, called a planetary nebula nucleus (PNN), ionizes the ejected material. Absorbed ultraviolet light energises the shell of nebulous gas around the central star, causing it to appear as a brightly coloured planetary nebula.

Planetary nebulae likely play a crucial role in the chemical evolution of the Milky Way by expelling elements to the interstellar medium from stars where those elements were created. Planetary nebulae are observed in more distant galaxies, yielding useful information about their chemical abundances.

Stars greater than 8 solar masses (M) will likely end their lives in dramatic supernovae explosions, while planetary nebulae seemingly only occur at the end of the lives of intermediate and low mass stars between 0.8 M to 8.0 M.

  • source 
  • images: NASA/ESA, Hubble

Total Solar Eclipse Timelapse by Frank Mille…

Total Solar Eclipse Timelapse by Frank Miller