Category: planetavermelho

Mars Express finds evidence of liquid water un…

A ground-penetrating radar aboard the European Space Agency’s Mars Express satellite has found evidence for a pool of liquid water, a potentially habitable environment, buried under layers of ice and dust at the red planet’s south pole.

“This subsurface anomaly on Mars has radar properties matching water or water-rich sediments,” said Roberto Orosei, principal investigator of the Mars Advanced Radar for Subsurface and Ionosphere Sounding instrument, or MARSIS, lead author of a paper in the journal Science describing the discovery.

The conclusion is based on observations of a relatively small area of Mars, but “it is an exciting prospect to think there could be more of these underground pockets of water elsewhere, yet to be discovered,” added Orosei.

Scientists have long theorised the presence of subsurface pools under the martian poles where the melting point of water could be decreased due to the weight of overlying layers of ice. The presence of salts in the Martian soil also would act to reduce the melting point and, perhaps, keep water liquid even at sub-freezing temperatures.

Earlier observations by MARSIS were inconclusive, but researchers developed new techniques to improve resolution and accuracy.

“We’d seen hints of interesting subsurface features for years but we couldn’t reproduce the result from orbit to orbit, because the sampling rates and resolution of our data was previously too low,” said Andrea Cicchetti, MARSIS operations manager.

“We had to come up with a new operating mode to bypass some onboard processing and trigger a higher sampling rate and thus improve the resolution of the footprint of our dataset. Now we see things that simply were not possible before.”

MARSIS works by firing penetrating radar beams at the surface of Mars and then measuring the strength of the signals as they are reflected back to the spacecraft.

The data indicating water came from a 200-kilometre-wide (124-mile-wide) area that shows the south polar region features multiple layers of ice and dust down to a depth of about 1.5 kilometres (0.9 miles). A particularly bright reflection below the layered deposits can be seen in a zone measuring about 20 kilometres (12 miles) across.

Orosei’s team interprets the bright reflection as the interface between overlying ice and a pool or pond of liquid water. The pool must be at least several centimetres thick for the MARSIS instrument to detect it.

“The long duration of Mars Express, and the exhausting effort made by the radar team to overcome many analytical challenges, enabled this much-awaited result, demonstrating that the mission and its payload still have a great science potential,” says Dmitri Titov, ESA’s Mars Express project scientist.

The discovery is significant because it raises the possibility, at least, of potentially habitable sub-surface environments.

“Some forms of microbial life are known to thrive in Earth’s subglacial environments, but could underground pockets of salty, sediment-rich liquid water on Mars also provide a suitable habitat, either now or in the past?” ESA asked in a statement. “Whether life has ever existed on Mars remains an open question.”

source

Phoenix (spacecraft)

Phoenix was a robotic spacecraft on a space exploration mission on Mars under the Mars Scout Program. The Phoenix landerdescended on Mars on May 25, 2008. Mission scientists used instruments aboard the lander to search for environments suitable for microbial life on Mars, and to research the history of water there. The total mission cost was about US $386 million, which includes cost of the launch.

Phoenix during testing in September 2006.

Phoenix was NASA’s sixth successful landing out of seven attempts and was the first successful landing in a Martian polar region.

Phoenix Landing Site Indicated on Global View.  

The lander completed its mission in August 2008, and made a last brief communication with Earth on November 2 as available solar power dropped with the Martian winter. 

A thin layer of water frost is visible on the ground around NASA’s Phoenix Mars Lander in this image taken by the Surface Stereo Imager at 6 a.m. on Sol 79 (August 14, 2008), the 79th Martian day after landing. The frost began to disappear shortly after 6 a.m. as the sun rose on the Phoenix landing site.

The mission was declared concluded on November 10, 2008, after engineers were unable to re-contact the craft. After unsuccessful attempts to contact the lander by the Mars Odyssey orbiter up to and past the Martian summer solstice on May 12, 2010, JPL declared the lander to be dead. The program was considered a success because it completed all planned science experiments and observations

This artist’s rendering shows a possible fate for the Phoenix Mars Lander.

The Jet Propulsion Laboratory made adjustments to the orbits of its two active satellites around Mars, Mars Reconnaissance Orbiter and Mars Odyssey, and the European Space Agency similarly adjusted the orbit of its Mars Express spacecraft to be in the right place on May 25, 2008 to observe Phoenix as it entered the atmosphere and then landed on the surface.

Descent of Phoenix with a crater in the background taken by Mars Reconnaissance Orbiter.

This information helps designers to improve future landers. The projected landing area was an ellipse 100 km by 20 km covering terrain which has been informally named “Green Valley" and contains the largest concentration of water ice outside the poles.

Above the Martian arctic circle, the sun does not set during the peak of the Martian summer. But, this period of maximum solar energy is past. On Sol 86, or the 86th Martian day after Phoenix landed on the Red planet, the sun fully set behind a slight rise to the north for about half an hour.

Phoenix landed in the Green Valley of Vastitas Borealis on May 25, 2008, in the late Martian northern hemisphere spring, where the Sun shone on its solar panels the whole Martian day.

The landing was made on a flat surface, with the lander reporting only 0.3 degrees of tilt. Just before landing, the craft used its thrusters to orient its solar panels along an east-west axis to maximize power generation. 

This black-and-white self-portrait shows Phoenix’s leg nestled in the Martian soil.

The lander waited 15 minutes before opening its solar panels, to allow dust to settle. The first images from the lander became available around 7:00 p.m. PDT (2008-05-26 02:00 UTC). The images show a surface strewn with pebbles and incised with small troughs into polygons about 5 m across and 10 cm high, with the expected absence of large rocks and hills.

Color versions of the photos showing ice sublimation, with the lower left corner of the trench enlarged in the insets in the upper right of the images.

On July 31, 2008 (sol 65), NASA announced that Phoenix confirmed the presence of water ice on Mars, as predicted in 2002 by the Mars Odyssey orbiter. During the initial heating cycle of a new sample, TEGA’s mass spectrometer detected water vapor when the sample temperature reached 0 °C. Liquid water cannot exist on the surface of Mars with its present low atmospheric pressure, except at the lowest elevations for short periods.

Ten interesting facts about Mars

The ancient Sumerians believed that Mars was Nergal, the god of war and plague. During Sumerian times, Nergal was a minor deity of little significance, but, during later times, his main cult center was the city of Nineveh. In Mesopotamian texts, Mars is referred to as the “star of judgement of the fate of the dead”. The existence of Mars as a wandering object in the night sky was recorded by the ancient Egyptian astronomers and, by 1534 BCE, they were familiar with the retrograde motion of the planet. By the period of the Neo-Babylonian Empire, the Babylonian astronomers were making regular records of the positions of the planets and systematic observations of their behavior. For Mars, they knew that the planet made 37 synodic periods, or 42 circuits of the zodiac, every 79 years. They invented arithmetic methods for making minor corrections to the predicted positions of the planets.

image

Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System after Mercury.

image

The bright rust color Mars is known for is due to iron-rich minerals in its regolith — the loose dust and rock covering its surface. The soil of Earth is a kind of regolith, albeit one loaded with organic content. According to NASA, the iron minerals oxidize, or rust, causing the soil to look red.

image

The rotational period and seasonal cycles of Mars are likewise similar to those of Earth, as is the tilt that produces the seasons. Mars is the site of Olympus Mons, the largest volcano and second-highest known mountain in the Solar System, and of Valles Marineris, one of the largest canyons in the Solar System.

image

Mars has two moons, Phobos and Deimos, which are small and irregularly shaped. These may be captured asteroids, similar to 5261 Eureka, a Mars trojan.

image

There are ongoing investigations assessing the past habitability potential of Mars, as well as the possibility of extant life. Future astrobiology missions are planned, including the Mars 2020 and ExoMars rovers. Liquid water cannot exist on the surface of Mars due to low atmospheric pressure, which is less than 1% of the Earth’s, except at the lowest elevations for short periods. The two polar ice caps appear to be made largely of water. The volume of water ice in the south polar ice cap, if melted, would be sufficient to cover the entire planetary surface to a depth of 11 meters (36 ft). In November 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars. The volume of water detected has been estimated to be equivalent to the volume of water in Lake Superior.

image

Mars can easily be seen from Earth with the naked eye, as can its reddish coloring. Its apparent magnitude reaches −2.91, which is surpassed only by Jupiter, Venus, the Moon, and the Sun. Optical ground-based telescopes are typically limited to resolving features about 300 kilometers (190 mi) across when Earth and Mars are closest because of Earth’s atmosphere.

image

Like Earth, Mars has differentiated into a dense metallic core overlaid by less dense materials. Current models of its interior imply a core with a radius of about 1,794 ± 65 kilometers (1,115 ± 40 mi), consisting primarily of iron and nickel with about 16–17% sulfur. This iron(II) sulfide core is thought to be twice as rich in lighter elements as Earth’s. The core is surrounded by a silicate mantle that formed many of the tectonic and volcanic features on the planet, but it appears to be dormant. Besides silicon and oxygen, the most abundant elements in the Martian crust are iron, magnesium, aluminum, calcium, and potassium. The average thickness of the planet’s crust is about 50 km (31 mi), with a maximum thickness of 125 km (78 mi). Earth’s crust averages 40 km (25 mi).

Mars lost its magnetosphere 4 billion years ago, possibly because of numerous asteroid strikes, so the solar wind interacts directly with the Martian ionosphere, lowering the atmospheric density by stripping away atoms from the outer layer. Both Mars Global Surveyor and Mars Expresshave detected ionised atmospheric particles trailing off into space behind Mars, and this atmospheric loss is being studied by the MAVEN orbiter. Compared to Earth, the atmosphere of Mars is quite rarefied.

image

Mars’s average distance from the Sun is roughly 230 million kilometres (143,000,000 mi), and its orbital period is 687 (Earth) days. The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours

image

Mars is scarred by a number of impact craters: a total of 43,000 craters with a diameter of 5 km (3.1 mi) or greater have been found. The largest confirmed of these is the Hellas impact basin, a light albedo feature clearly visible from Earth. Due to the smaller mass of Mars, the probability of an object colliding with the planet is about half that of Earth. Mars is located closer to the asteroid belt, so it has an increased chance of being struck by materials from that source. Mars is more likely to be struck by short-period comets, i.e., those that lie within the orbit of Jupiter. In spite of this, there are far fewer craters on Mars compared with the Moon, because the atmosphere of Mars provides protection against small meteors and surface modifying processes have erased some craters.

Martian craters can have a morphology that suggests the ground became wet after the meteor impacted.

  • images: NASA/JPL-Caltech/Univ. of Arizona

    , ESA, Tunç Tezel

The Spiral North Pole of Mars A  mosaic …

The Spiral North Pole of Mars

A  mosaic from ESA’s Mars Express

and by the Mars Orbiter Camera on board the Mars Global Surveyor

shows off the Red Planet’s north polar ice cap and its distinctive dark spiralling troughs.

Image credit: NASA/ESA 

A boulder-strewn field of red rocks stretches across the…

A boulder-strewn field of red rocks stretches across the horizon in this self-portrait of Viking 2 on Mars’ Utopian Plain. Viking 2 landed Sept. 3,1976, some 4,600 miles from the twin Viking 1 craft, which touched down on July 20.

 

Image Credit: NASA/JPL

A mosaic of the Valles Marineris hemisphere of Mars. This view…

A mosaic of the Valles Marineris hemisphere of Mars. This view is similar to what one would see from a spacecraft, according to NASA.

Credit: NASA/JPL-Caltech