Category: astrofisica

Using ESO’s Very Large Telescope and the…

Using ESO’s Very Large Telescope and the W.M. Keck Observatory, astronomers at the Ecole Polytechnique Federale de Lausanne in Switzerland and the California Institute of Technology, USA, have discovered what appears to be the first known triplet of quasars. This close trio of supermassive black holes lies about 10.5 billion light-years away towards the Virgo (The Virgin) constellation. The photo shows the image of the triple quasar QQQ 1429-008, with the three components (A, B and C) indicated on the additional image.

Credit: ESO

NASA’s Fermi Traces Source of Cosmic Neutrino …

For the first time ever, scientists using NASA’s Fermi Gamma-ray Space Telescope have found the source of a high-energy neutrino from outside our galaxy. This neutrino traveled 3.7 billion years at almost the speed of light before being detected on Earth. This is farther than any other neutrino whose origin scientists can identify.

High-energy neutrinos are hard-to-catch particles that scientists think are created by the most powerful events in the cosmos, such as galaxy mergers and material falling onto supermassive black holes. They travel at speeds just shy of the speed of light and rarely interact with other matter, allowing them to travel unimpeded across distances of billions of light-years.


The neutrino was discovered by an international team of scientists using the National Science Foundation’s IceCube Neutrino Observatory at the Amundsen–Scott South Pole Station. Fermi found the source of the neutrino by tracing its path back to a blast of gamma-ray light from a distant supermassive black hole in the constellation Orion.

“Again, Fermi has helped make another giant leap in a growing field we call multimessenger astronomy,” said Paul Hertz, director of the Astrophysics Division at NASA Headquarters in Washington. “Neutrinos and gravitational waves deliver new kinds of information about the most extreme environments in the universe. But to best understand what they’re telling us, we need to connect them to the ‘messenger’ astronomers know best—light.”

Scientists study neutrinos, as well as cosmic rays and gamma rays, to understand what is going on in turbulent cosmic environments such as supernovas, black holes and stars. Neutrinos show the complex processes that occur inside the environment, and cosmic rays show the force and speed of violent activity. But, scientists rely on gamma rays, the most energetic form of light, to brightly flag what cosmic source is producing these neutrinos and cosmic rays.


“The most extreme cosmic explosions produce gravitational waves, and the most extreme cosmic accelerators produce high-energy neutrinos and cosmic rays,” says Regina Caputo of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the analysis coordinator for the Fermi Large Area Telescope Collaboration. “Through Fermi, gamma rays are providing a bridge to each of these new cosmic signals.”


The discovery is the subject of two papers published Thursday in the journal Science. The source identification paper also includes important follow-up observations by the Major Atmospheric Gamma Imaging Cherenkov Telescopes and additional data from NASA’s Neil Gehrels Swift Observatory and many other facilities.

On Sept. 22, 2017, scientists using IceCube detected signs of a neutrino striking the Antarctic ice with energy of about 300 trillion electron volts—more than 45 times the energy achievable in the most powerful particle accelerator on Earth. This high energy strongly suggested that the neutrino had to be from beyond our solar system. Backtracking the path through IceCube indicated where in the sky the neutrino came from, and automated alerts notified astronomers around the globe to search this region for flares or outbursts that could be associated with the event.


Data from Fermi’s Large Area Telescope revealed enhanced gamma-ray emission from a well-known active galaxy at the time the neutrino arrived. This is a type of active galaxy called a blazar, with a supermassive black hole with millions to billions of times the Sun’s mass that blasts jets of particles outward in opposite directions at nearly the speed of light. Blazars are especially bright and active because one of these jets happens to point almost directly toward Earth.

Fermi scientist Yasuyuki Tanaka at Hiroshima University in Japan was the first to associate the neutrino event with the blazar designated TXS 0506+056 (TXS 0506 for short).

“Fermi’s LAT monitors the entire sky in gamma rays and keeps tabs on the activity of some 2,000 blazars, yet TXS 0506 really stood out,” said Sara Buson, a NASA Postdoctoral Fellow at Goddard who performed the data analysis with Anna Franckowiak, a scientist at the Deutsches Elektronen-Synchrotron research center in Zeuthen, Germany. “This blazar is located near the center of the sky position determined by IceCube and, at the time of the neutrino detection, was the most active Fermi had seen it in a decade.”


NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States. The NASA Postdoctoral Fellow program is administered by Universities Space Research Association under contract with NASA.


NASA’s Fermi Satellite Celebrates 10 Years of …

On June 11, NASA’s Fermi Gamma-ray Space Telescope celebrates a decade of using gamma rays, the highest-energy form of light in the cosmos, to study black holes, neutron stars, and other extreme cosmic objects and events.


Left: A STEREO B image of the far side of the sun during the Sept. 1, 2014, solar eruption. Right: The Earth-facing side of the sun at the same time as seen by NASA’s Solar Dynamics Observatory. The view includes the area from which NASA’s Fermi detected high-energy gamma rays. Includes animated gif. Credit: NASA/STEREO and NASA/SDO


A rupture in the crust of a highly magnetized neutron star, shown here in an artist’s rendering, can trigger high-energy eruptions. Fermi observations of these blasts include information on how the star’s surface twists and vibrates, providing new insights into what lies beneath. Credits: NASA’s Goddard Space Flight Center/S. Wiessinger 


Fermi finds the first extragalactic gamma-ray pulsar. NASA’s Fermi Gamma-ray Space Telescope has detected the first extragalactic gamma-ray pulsar, PSR J0540-6919, near the Tarantula Nebula (top center) star-forming region in the Large Magellanic Cloud, a satellite galaxy that orbits our own Milky Way. Fermi detects a second pulsar (right) as well but not its pulses. PSR J0540-6919 now holds the record as the highest-luminosity gamma-ray pulsar. The angular distance between the pulsars corresponds to about half the apparent size of a full moon. Background: An image of the Tarantula Nebula and its surroundings in visible light. Credit: NASA’s Goddard Space Flight Center; background: ESO/R. Fosbury (ST-ECF)


These maps, both centered on the north galactic pole, show how the sky looks at gamma-ray energies above 100 million electron volts (MeV). Left: The sky during a three-hour interval prior to the detection of GRB 130427A. Right: A three-hour interval starting 2.5 hours before the burst and ending 30 minutes into the event, illustrating its brightness relative to the rest of the gamma-ray sky. GRB 130427A was located in the constellation Leo near its border with Ursa Major, whose brightest stars form the familiar Big Dipper. For reference, this image includes the stars and outlines of both constellations. Labeled. Credit: NASA/DOE/Fermi LAT Collaboration.

Novae typically originate in binary systems containing sun-like stars, as shown in this artist’s rendering. A nova in a system like this likely produces gamma rays (magenta) through collisions among multiple shock waves in the rapidly expanding shell of debris. Credit: NASA’s Goddard Space Flight Center/S. Wiessinger

Gamma Rays in Active Galactic Nuclei

Gamma-ray Burst Photon Delay as Expected by Quantum Gravity. Print resolution still. In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect, eliminating some approaches to a new theory of gravity. Credit: NASA/Sonoma State University/Aurore Simonnet

“Fermi’s first 10 years have produced numerous scientific discoveries that have revolutionized our understanding of the gamma-ray universe,” said Paul Hertz, Astrophysics Division director at NASA Headquarters in Washington. 

By scanning the sky every three hours, Fermi’s main instrument, the Large Area Telescope (LAT), has observed more than 5,000 individual gamma-ray sources, including an explosion called GRB 130427A, the most powerful gamma-ray burst scientists have detected.

In 1949, Enrico Fermi — an Italian-American pioneer in high-energy physics and Nobel laureate for whom the mission was named — suggested that cosmic rays, particles traveling at nearly the speed of light, could be propelled by supernova shock waves. In 2013, Fermi’s LAT used gamma rays to prove these stellar remnants are at least one source of the speedy particles.

Fermi’s all-sky map, produced by the LAT, has revealed two massive structures extending above and below the plane of the Milky Way. These two “bubbles” span 50,000 light-years and were probably produced by the supermassive black hole at the center of the galaxy only a few million years ago.

read more

The highly distorted supernova remnant shown i…

The highly distorted supernova remnant shown in this image may contain the most recent black hole formed in the Milky Way galaxy. The image combines X-rays from NASA’s Chandra X-ray Observatory in blue and green, radio data from the NSF’s Very Large Array in pink, and infrared data from Caltech’s Palomar Observatory in yellow.

Credits: X-ray: NASA/CXC/MIT/L.Lopez et al; Infrared: Palomar; Radio: NSF/NRAO/VLA

Gravitational Wave Event Likely Signaled Creat…

The spectacular merger of two neutron stars that generated gravitational waves announced last fall likely did something else: birthed a black hole. This newly spawned black hole would be the lowest mass black hole ever found, as described in our latest press release.

After two separate stars underwent supernova explosions, two ultra-dense cores (that is, neutron stars) were left behind. These two neutron stars were so close that gravitational wave radiation pulled them together until they merged and collapsed into a black hole. The artist’s illustration shows a key part of the process that created this new black hole, as the two neutron stars spin around each other while merging. The purple material depicts debris from the merger.


An additional illustration shows the black hole that resulted from the merger, along with a disk of infalling matter and a jet of high-energy particles.

A new study analyzed data from NASA’s Chandra X-ray Observatory taken in the days, weeks, and months after the detection of gravitational waves by the Laser Interferometer Gravitational Wave Observatory (LIGO) and gamma rays by NASA’s Fermi mission on August 17, 2017.

X-rays from Chandra are critical for understanding what happened after the two neutron stars collided. The question is: did the merged neutron star form a larger, heavier neutron star or a black hole?

Chandra observed GW170817 multiple times. An observation two to three days after the event failed to detect a source, but subsequent observations 9, 15 and 16 days after the event, resulted in detections (bottom left). The source went behind the Sun soon after, but further brightening was seen in Chandra observations about 110 days after the event (bottom right), followed by comparable X-ray intensity after about 160 days.


If the neutron stars merged and formed a heavier neutron star, then astronomers would expect it to spin rapidly and generate a very strong magnetic field. This, in turn, would have created an expanding bubble of high-energy particles that would result in bright X-ray emission. Instead, the Chandra data show levels of X-rays that are a factor of a few to several hundred times lower than expected for a rapidly spinning, merged neutron star and the associated bubble of high-energy particles, implying a black hole likely formed instead.

By comparing the Chandra observations with those by the NSF’s Karl G. Jansky Very Large Array (VLA), researchers explain the observed X-ray emission as being due entirely to the shock wave – akin to a sonic boom from a supersonic plane – from the merger smashing into surrounding gas.  There is no sign of X-rays resulting from a neutron star. Thus, the researchers in this study claim this is a strong case for the merger of two neutron stars merging to then produce bursts of radiation and form a black hole.


Wolf–Rayet star Wolf–Rayet stars, often a…

Wolf–Rayet star

Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of highly ionised helium and nitrogen or carbon. The spectra indicate very high surface enhancement of heavy elements, depletion of hydrogen, and strong stellar winds. Their surface temperatures range from 30,000 K to around 200,000 K, hotter than almost all other stars.

Classic (or Population I) Wolf–Rayet stars are evolved, massive stars that have completely lost their outer hydrogen and are fusing helium or heavier elements in the core. A subset of the population I WR stars show hydrogen lines in their spectra and are known as WNh stars; they are young extremely massive stars still fusing hydrogen at the core, with helium and nitrogen exposed at the surface by strong mixing and radiation-driven mass loss. A separate group of stars with WR spectra are the central stars of planetary nebulae (CSPNe), post asymptotic giant branch stars that were similar to the Sun while on the main sequence, but have now ceased fusion and shed their atmospheres to reveal a bare carbon-oxygen core.

source | images: NASA/ Judy Schmidt, Michael Miller

Planetary nebula A planetary nebula, abbrev…

Planetary nebula

A planetary nebula, abbreviated as PN or plural PNe, is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The word “nebula” is Latin for mist or cloud, and the term “planetary nebula” is a misnomer that originated in the 1780s with astronomer William Herschel because, when viewed through his telescope, these objects resemble the rounded shapes of planets. Herschel’s name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years.

Most planetary nebulae form at the end of the star’s life, during the red giant phase, when the outer layers of the star are expelled by strong stellar winds. After most of the red giant’s atmosphere is dissipated, the ultraviolet radiation of the hot luminous core, called a planetary nebula nucleus (PNN), ionizes the ejected material. Absorbed ultraviolet light energises the shell of nebulous gas around the central star, causing it to appear as a brightly coloured planetary nebula.

Planetary nebulae likely play a crucial role in the chemical evolution of the Milky Way by expelling elements to the interstellar medium from stars where those elements were created. Planetary nebulae are observed in more distant galaxies, yielding useful information about their chemical abundances.

Stars greater than 8 solar masses (M) will likely end their lives in dramatic supernovae explosions, while planetary nebulae seemingly only occur at the end of the lives of intermediate and low mass stars between 0.8 M to 8.0 M.

  • source 
  • images: NASA/ESA, Hubble

The Crab Pulsar (PSR B0531+21) is a relative…

The Crab Pulsar (PSR B0531+21) is a relatively young neutron star. The star is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was widely observed on Earth in the year 1054. Discovered in 1968, the pulsar was the first to be connected with a supernova remnant.


The Crab Pulsar is one of very few pulsars to be identified optically. The optical pulsar is roughly 20 kilometres (12 mi) in diameter and the pulsar “beams” rotate once every 33 milliseconds, or 30 times each second.


The outflowing relativistic wind from the neutron star generates synchrotron emission, which produces the bulk of the emission from the nebula, seen from radio wavesthrough to gamma rays. The most dynamic feature in the inner part of the nebula is the point where the pulsar’s equatorial wind slams into the surrounding nebula, forming a termination shock.

The shape and position of this feature shifts rapidly, with the equatorial wind appearing as a series of wisp-like features that steepen, brighten, then fade as they move away from the pulsar into the main body of the nebula. The period of the pulsar’s rotation is slowing by 38 nanoseconds per day due to the large amounts of energy carried away in the pulsar wind.


The Crab Nebula is often used as a calibration source in X-ray astronomy. It is very bright in X-rays and the flux density and spectrum are known to be constant, with the exception of the pulsar itself.

source |

A History of the Crab Nebula

images: NASA/ESA, Hubble, Cambridge University Lucky Imaging Group, 

NASA/CXC/ASU/J.Hester et al.

Fast radio burst (FRB) In radio astronomy…

Fast radio burst (FRB)

In radio astronomy, a fast radio burst (FRB) is a high-energy astrophysical phenomenon of unknown origin manifested as a transient radio pulse lasting a few milliseconds on average.

The first FRB was discovered by Duncan Lorimer and his student David Narkevic in 2007 when they were looking through archival pulsar survey data, and it is therefore commonly referred to as Lorimer Burst. Many FRBs have since been found, including a repeating FRB. Although the exact origin and cause is uncertain, they are almost definitely extragalactic, with the nearest roughly 1.6 billion light years away, and the furthest 17 billion light years away (comoving).

When the FRBs are polarized, it indicates that they are emitted from a source contained within an extremely powerful magnetic field. The origin of the FRBs has yet to be determined; proposals for its origin range from a rapidly rotating neutron star and a black hole to extraterrestrial intelligence.


Neutron star


Black Holes


Sign of extraterrestrial intelligence?

The localization and characterization of the one known repeating source, FRB 121102, has revolutizoned the understanding of the source class. FRB 121102 is identified with a galaxy at a distance of approximately 3 billion light years, well outside the Milky Way Galaxy, and embedded in an extreme environment.


Fast radio bursts are named by the date the signal was recorded, as “FRB YYMMDD”. The first fast radio burst to be described, the Lorimer Burst FRB 010724, was identified in 2007 in archived data recorded by the Parkes Observatory on 24 July 2001. Since then, most known FRBs have been found in previously recorded data. On 19 January 2015, astronomers at Australia’s national science agency (CSIRO) reported that a fast radio burst had been observed for the first time live, by the Parkes Observatory.

Parkes radio telescope

Fast radio bursts are bright, unresolved (pointsource-like), broadband (spanning a large range of radio frequencies), millisecond flashes found in parts of the sky outside the Milky Way. Unlike many radio sources the signal from a burst is detected in a short period of time with enough strength to stand out from the noise floor. 


The burst usually appears as a single spike of energy without any change in its strength over time. The bursts last for a period of several milliseconds (thousandths of a second). The bursts come from all over the sky, and are not concentrated on the plane of the Milky Way. Known FRB locations are biased by the parts of the sky that the observatories can image.

Images captured by NASA’s Spitzer Space …

Images captured by NASA’s Spitzer Space Telescope. (Some images include data from other telescopes)

The Spitzer Space Telescope is the final mission in NASA’s Great Observatories Program – a family of four space-based observatories, each observing the Universe in a different kind of light. The other missions in the program include the visible-light Hubble Space Telescope (HST), Compton Gamma-Ray Observatory (CGRO), and the Chandra X-Ray Observatory (CXO).

The Cryogenic Telescope Assembly, which contains the a 85 centimeter telescope and Spitzer’s three scientific instruments

The Spacecraft, which controls the telescope, provides power to the instruments, handles the scientific data and communicates with Earth

It may seem like a contradiction, but NASA’s Spitzer Space Telescope must be simultaneously warm and cold to function properly. Everything in the Cryogenic Telescope Assembly must be cooled to only a few degrees above absolute zero (-459 degrees Fahrenheit, or -273 degrees Celsius). This is achieved with an onboard tank of liquid helium, or cryogen.  Meanwhile, electronic equipment in The Spacecraft portion needs to operate near room temperature.

Spitzer’s highly sensitive instruments allow scientists to peer into cosmic regions that are hidden from optical telescopes, including dusty stellar nurseries, the centers of galaxies, and newly forming planetary systems. Spitzer’s infrared eyes also allows astronomers see cooler objects in space, like failed stars (brown dwarfs), extrasolar planets, giant molecular clouds, and organic molecules that may hold the secret to life on other planets.

Spitzer was originally built to last for a minimum of 2.5 years, but it lasted in the cold phase for over 5.5 years. On May 15, 2009 the coolant was finally depleted and the Spitzer “warm mission” began.  Operating with 2 channels from one of its instruments called IRAC, Spitzer can continue to operate until late in this decade. Check out: Fast Facts and Current Status.

Credit NASA | images: NASA/Spitzer