Author: Astronomy & Astrophysics

source

source

Fast radio burst (FRB) In radio astronomy…

Fast radio burst (FRB)

In radio astronomy, a fast radio burst (FRB) is a high-energy astrophysical phenomenon of unknown origin manifested as a transient radio pulse lasting a few milliseconds on average.

The first FRB was discovered by Duncan Lorimer and his student David Narkevic in 2007 when they were looking through archival pulsar survey data, and it is therefore commonly referred to as Lorimer Burst. Many FRBs have since been found, including a repeating FRB. Although the exact origin and cause is uncertain, they are almost definitely extragalactic, with the nearest roughly 1.6 billion light years away, and the furthest 17 billion light years away (comoving).

When the FRBs are polarized, it indicates that they are emitted from a source contained within an extremely powerful magnetic field. The origin of the FRBs has yet to be determined; proposals for its origin range from a rapidly rotating neutron star and a black hole to extraterrestrial intelligence.

image

Neutron star

image

Black Holes

image

Sign of extraterrestrial intelligence?

The localization and characterization of the one known repeating source, FRB 121102, has revolutizoned the understanding of the source class. FRB 121102 is identified with a galaxy at a distance of approximately 3 billion light years, well outside the Milky Way Galaxy, and embedded in an extreme environment.

image

Fast radio bursts are named by the date the signal was recorded, as “FRB YYMMDD”. The first fast radio burst to be described, the Lorimer Burst FRB 010724, was identified in 2007 in archived data recorded by the Parkes Observatory on 24 July 2001. Since then, most known FRBs have been found in previously recorded data. On 19 January 2015, astronomers at Australia’s national science agency (CSIRO) reported that a fast radio burst had been observed for the first time live, by the Parkes Observatory.

Parkes radio telescope

Fast radio bursts are bright, unresolved (pointsource-like), broadband (spanning a large range of radio frequencies), millisecond flashes found in parts of the sky outside the Milky Way. Unlike many radio sources the signal from a burst is detected in a short period of time with enough strength to stand out from the noise floor. 

image

The burst usually appears as a single spike of energy without any change in its strength over time. The bursts last for a period of several milliseconds (thousandths of a second). The bursts come from all over the sky, and are not concentrated on the plane of the Milky Way. Known FRB locations are biased by the parts of the sky that the observatories can image.

astronomyblog: This montage of images captu…

astronomyblog:

This montage of images captured by NASA’s Pluto-bound New Horizons during a gravity assist flyby in February 2007 shows Jupiter and its volcanic moon Io. 

Credit: NASA/JHUAPL/SWRI

astronomyblog: Saturn and its moons

astronomyblog:

Saturn and its moons

Image credit: NASA/JPL-Caltech

astronomyblog: At the Sun’s Edge Credit: Ca…

astronomyblog:

At the Sun’s Edge 

Credit: Catalin Beldea

astronomyblog: Sequence of images of auroras …

astronomyblog:

Sequence of images of auroras seen at the south pole of Saturn. Images combine visible and ultraviolet light.

Credit: NASA, ESA, J. Clarke (Boston University, USA), and Z. Levay (STScI)

astronomyblog: Comparison of the planets of t…

astronomyblog:

Comparison of the planets of the solar system, Pluto and Sun in relation to the earth.

Images: commons.wikimedia (Sun: Alan Friedman)

astronomyblog: Located in the Large Magellani…

astronomyblog:

Located in the Large Magellanic Cloud, one of our neighbouring dwarf galaxies, this young globular-like star cluster is surrounded by a pattern of filamentary nebulosity that is thought to have been created during supernova blasts. It consists of a main globular cluster in the centre and a younger, smaller cluster, seen below and to the right, composed of extremely hot, blue stars and fainter, red T-Tauri stars. This wide variety of stars allows a thorough study of star formation processes.

Credit: ESA, NASA and Martino Romaniello (ESO, Germany)

Night sky just after sunset on March 24, 2012 …

Night sky just after sunset on March 24, 2012 with crescent moon and backlight, Jupiter, Venus and the Pleiades.

by

Ritzelmut

In 40 million years, Mars may have a ring (a…

In 40 million years, Mars may have a ring (and one fewer moon)

Nothing lasts forever – especially Phobos, one of the two small moons orbiting Mars. The moonlet is spiraling closer and closer to the Red Planet on its way toward an inevitable collision with its host. But a new study suggests that pieces of Phobos will get a second life as a ring around the rocky planet.

A moon – or moonlet – in orbit around a planet has three possible destinies. If it is just the right distance from its host, it will stay in orbit indefinitely. If it’s beyond that point of equilibrium, it will slowly drift away. (This is the situation with the moon; as it gradually pulls away from Earth, its orbit is growing by about 1.5 inches per year.) And if a moon starts out on the too-close side, its orbit will keep shrinking until there is no distance left between it and its host planet.

The Martian ring will last for at least 1 million years – and perhaps for as long as 100 million years, according to the study.

The rest of Phobos will probably remain intact, until it hits the Martian surface. But it won’t be a direct impact; instead, the moonlet’s remains will strike at an oblique angle, skipping along the surface like a smooth stone on a calm lake.

This has probably happened before – scientists believe a group of elliptical craters on the Martian surface were caused by a small moon that skidded to its demise. (If this were to happen on Earth, our planet’s greater mass would produce a crash as big as the one that wiped out the dinosaurs, the researchers noted as an aside.)

source

images: NASA/JPL,

Tushar Mittal using Celestia 2001-2010, Celestia Development Team.