NASA’s Fermi Satellite Celebrates 10 Years of …

On June 11, NASA’s Fermi Gamma-ray Space Telescope celebrates a decade of using gamma rays, the highest-energy form of light in the cosmos, to study black holes, neutron stars, and other extreme cosmic objects and events.


Left: A STEREO B image of the far side of the sun during the Sept. 1, 2014, solar eruption. Right: The Earth-facing side of the sun at the same time as seen by NASA’s Solar Dynamics Observatory. The view includes the area from which NASA’s Fermi detected high-energy gamma rays. Includes animated gif. Credit: NASA/STEREO and NASA/SDO


A rupture in the crust of a highly magnetized neutron star, shown here in an artist’s rendering, can trigger high-energy eruptions. Fermi observations of these blasts include information on how the star’s surface twists and vibrates, providing new insights into what lies beneath. Credits: NASA’s Goddard Space Flight Center/S. Wiessinger 


Fermi finds the first extragalactic gamma-ray pulsar. NASA’s Fermi Gamma-ray Space Telescope has detected the first extragalactic gamma-ray pulsar, PSR J0540-6919, near the Tarantula Nebula (top center) star-forming region in the Large Magellanic Cloud, a satellite galaxy that orbits our own Milky Way. Fermi detects a second pulsar (right) as well but not its pulses. PSR J0540-6919 now holds the record as the highest-luminosity gamma-ray pulsar. The angular distance between the pulsars corresponds to about half the apparent size of a full moon. Background: An image of the Tarantula Nebula and its surroundings in visible light. Credit: NASA’s Goddard Space Flight Center; background: ESO/R. Fosbury (ST-ECF)


These maps, both centered on the north galactic pole, show how the sky looks at gamma-ray energies above 100 million electron volts (MeV). Left: The sky during a three-hour interval prior to the detection of GRB 130427A. Right: A three-hour interval starting 2.5 hours before the burst and ending 30 minutes into the event, illustrating its brightness relative to the rest of the gamma-ray sky. GRB 130427A was located in the constellation Leo near its border with Ursa Major, whose brightest stars form the familiar Big Dipper. For reference, this image includes the stars and outlines of both constellations. Labeled. Credit: NASA/DOE/Fermi LAT Collaboration.

Novae typically originate in binary systems containing sun-like stars, as shown in this artist’s rendering. A nova in a system like this likely produces gamma rays (magenta) through collisions among multiple shock waves in the rapidly expanding shell of debris. Credit: NASA’s Goddard Space Flight Center/S. Wiessinger

Gamma Rays in Active Galactic Nuclei

Gamma-ray Burst Photon Delay as Expected by Quantum Gravity. Print resolution still. In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect, eliminating some approaches to a new theory of gravity. Credit: NASA/Sonoma State University/Aurore Simonnet

“Fermi’s first 10 years have produced numerous scientific discoveries that have revolutionized our understanding of the gamma-ray universe,” said Paul Hertz, Astrophysics Division director at NASA Headquarters in Washington. 

By scanning the sky every three hours, Fermi’s main instrument, the Large Area Telescope (LAT), has observed more than 5,000 individual gamma-ray sources, including an explosion called GRB 130427A, the most powerful gamma-ray burst scientists have detected.

In 1949, Enrico Fermi — an Italian-American pioneer in high-energy physics and Nobel laureate for whom the mission was named — suggested that cosmic rays, particles traveling at nearly the speed of light, could be propelled by supernova shock waves. In 2013, Fermi’s LAT used gamma rays to prove these stellar remnants are at least one source of the speedy particles.

Fermi’s all-sky map, produced by the LAT, has revealed two massive structures extending above and below the plane of the Milky Way. These two “bubbles” span 50,000 light-years and were probably produced by the supermassive black hole at the center of the galaxy only a few million years ago.

read more