astronomyblog: A type Ia supernova (type one-a…

astronomyblog:

A type Ia supernova (type one-a) is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.

Physically, carbon–oxygen white dwarfs with a low rate of rotation are limited to below 1.44 solar masses (M). Beyond this, they re-ignite and in some cases trigger a supernova explosion. Somewhat confusingly, this limit is often referred to as the Chandrasekhar mass, despite being marginally different from the absolute Chandrasekhar limit where electron degeneracy pressure is unable to prevent catastrophic collapse. If a white dwarf gradually accretes mass from a binary companion, the general hypothesis is that its core will reach the ignition temperature for carbon fusion as it approaches the limit.

However, if the white dwarf merges with another white dwarf (a very rare event), it will momentarily exceed the limit and begin to collapse, again raising its temperature past the nuclear fusion ignition point. Within a few seconds of initiation of nuclear fusion, a substantial fraction of the matter in the white dwarf undergoes a runaway reaction, releasing enough energy (1–2×1044 J) to unbind the star in a supernova explosion.

This type Ia category of supernovae produces consistent peak luminosity because of the uniform mass of white dwarfs that explode via the accretion mechanism. The stability of this value allows these explosions to be used as standard candles to measure the distance to their host galaxies because the visual magnitude of the supernovae depends primarily on the distance.

  • source
  • image credit: Mark Garlick/Science Photo Library, ESO/L. Calçada